Fall Term – 2013 Woodrow Wilson School 585b

Living in a Greenhouse: Technology and Policy

Robert Socolow Phil Hannam, Al

Week Eight Supplementary material: November 8, 2013

- 1. Kanter on food, N2O, Guest, 2012
- 2. Creutzig on biocarbon, Guest, 2012

David Kanter WWS 585b – November 28, 2012

Agriculture and Climate Change

Impacts, contributions and implications for feeding 9 billion people

Outline

- Climate change → Agriculture
- Agriculture → Climate Change
- Deep dive Agricultural N₂O
- Implications for global food security
- Diverse areas of overlap:
 - Geoengineering
 - Immigration
 - GMOs

Climate change \rightarrow Agriculture

- Shifting precipitation patterns
- Temperature increases
- Sea level rise
- CO₂ fertilization
- Tropospheric ozone
- Impacts vary, with the poorest most vulnerable

Precipitation

Temperature

Linked – Temp. & precip.

Fisher et al. 2005

Sea level rise

https://www.cresis.ku.edu/data/sea-level-rise-maps

CO₂ fertilization

Tropospheric ozone

Using IPCC SRES high emissions (A2) scenario, 2030 relative yield loss compared to zero O_3 damage:

• Wheat: 5.4-26%,

• Soybean : 15-19%

• Maize: 4.4-8.7%

•Total losses: \$17-35 billion USD2000

annually

Using SRES low emissions (B1) scenario, 2030 relative yield loss:

•Wheat: 4.0-17%

•Soybean: 9.5-15%

•Maize: 2.5-6.0%

•Total losses: \$12-21 billion annually

Avnery et al. 2011

Impacts will vary

Poorest most vulnerable

Agriculture -> Climate Change

Share of global GHG emissions by sector, year 2000

Source: Drawn from data from WRI (2008)

Sources of emissions from the agricultural sector (2000)

Source: Drawn from data presented in USEPA (2006)

Mitigation

- Soil carbon sequestration (highest mitigation potential) e.g. conservation tillage, soil and woodland restoration...
- Nutrient management e.g. improved fertilizer use efficiency
- Livestock management e.g. better diet formulation
- Consumer behavioral changes e.g. less food wastage and meat consumption

Adaptation

- Shift planting dates and crop varieties to match shifting climate trends
- Diversifying farm products where possible
- Improved water management e.g. expanding irrigation systems
- Increase use of climate forecasting to help farmers prepare

Deep dive –N₂O

- Responsible for ~ 7% of our climate impact (excluding BC)
- Sources ½ natural, ½ antropogenic.
 Anthropogenic emissions have increased 40%-50% since 1860.
- Lifetime: 114 years; GWP₁₀₀: 298 (*IPCC* 2007)
- Recently identified as largest remaining anthropogenic threat to stratospheric ozone layer. Part of tightly coupled nitrogen cycle or 'cascade' (Galloway et al. 2003).

Emissions & mitigation opportunities

Anthropogenic N₂O Emissions by Sector

Fig. 2 Sector-by-sector contribution to anthropogenic N₂O emissions in 2005. Smaller sources such as wastewater treatment and aquaculture are included in the "Other" bar. Error bars represent the range of leading estimates, taken from USEPA (2006) (5), Davidson (2009) (8), Syakila & Kroeze (2011) (9), and Crutzen et al. (2008) (11).

Agriculture - Behavior

- Fertilizer best management practices (*Robertson & Vitousek* 2009):
 - Crop residue recycling & use of cover crops
 - Precision & split fertilizer application
 - Watershed management
 - Livestock management
 - 4Rs: Right product, right rate, right time, right place (*IFA*, 2007)
- Consumer behavioral changes food wastage, meat consumption...

Agriculture - Technology

Technology	Mitigation potential	Current use	Mitigation co- benefits
Nitrification inhibitors	~35%	High value crops, ~12% US corn cropland	NO ₃ -, NH ₃ , NO _x
Controlled-release fertilizer	~40%	High value crops, <1% of US corn cropland	NO ₃ -, NH ₃ , NO _x
Genetically engineered crops/breeding	~30%	NA	NO ₃ -, NH ₃ , NO _x

References – Mosier et al. (2004), Akiyama et al. (2009), O'Brien & Mullins (2009), Shrawat et al. (2008)

Meat production is increasing and uses fertilizer less efficiently

Figure 3 Long-term trends in average per capita food supply. Average annual per capita production of cereal grains and of slaughtered livestock, calculated as total global production for a given year divided by total global population for that year².

Galloway et al. 2002

Tilman et al. 2002

Challenges & opportunities to managing agricultural N₂O

Food security

— How to preserve and increase crop yields while reducing N₂O?

Equity

— How to allow regions that vastly under-fertilize to increase fertilizer use while globally reducing N₂O?

Nitrogen cascade

 Tight coupling of N cycle means that one atom of nitrogen can cascade through a variety of chemical forms, each with a different impact on environment

Fig. 1 Illustration of the nitrogen cascade showing the sequential effects that a single atom of N can have in various reservoirs after it has been converted from nonreactive N₂ to a reactive form (yellow arrows) and examples of existing international management policies. Abbreviations: NH₃, ammonia; NO₃⁻, nitrate; NOx, nitrogen oxide; N₂O, nitrous oxide. Adapted from Galloway et al. 2003 (7).

Food security

 Can we feed 9 billion people in an increasingly warm, wealthy world without increasing agricultural pollution, deforestation and food prices (the latter potentially partly due to increased bioenergy production) or reducing biodiversity?

Closing the yield gap

Current food production

Foley et al. 2011

Diet gap

Population *and* per capita consumption projected to increase

By 2050, people will be eating 60 percent more food, increasing the demand for, and prices of, agricultural products. Source: FAO, 2006¹

Meridian Institute, 2011; Tilman et al. 2011

Food prices – with & without climate change

Source: FAO 2010⁴⁴

Geoengineering

Crop yields in a geoengineered climate

J. Pongratz^{1*}, D. B. Lobell², L. Cao¹ and K. Caldeira¹

• Authors conclude that solar-radiation management in a high- CO_2 climate generally causes crop yields to increase, largely because temperature stresses are diminished while benefits of CO_2 fertilization are retained.

Immigration

Linkages among climate change, crop yields and Mexico-US cross-border migration

Shuaizhang Feng^{a,b}, Alan B. Krueger^{a,c,d}, and Michael Oppenheimer^{a,e,1}

- Estimated that a 10% reduction in crop yields would lead to an additional 2% of Mexican population to emigrate to US
- By 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of current population aged 15–65 y) to emigrate as a result of declines in agricultural productivity alone.

GM crops

Table 1. Examples of current and potential future applications of GM technology for crop genetic improvement. [Source: (18, 49)]

Time scale	Target crop trait	Target crops
Current	Tolerance to broad-spectrum	Maize, soybean, oilseed
	herbicide	brassica
	Resistance to chewing insect	Maize, cotton, oilseed
	pests	brassica
Short-term	Nutritional bio-fortification	Staple cereal crops, sweet
(5-10 years)		potato
-	Resistance to fungus and virus	Potato, wheat, rice, banana,
	pathogens	fruits, vegetables
	Resistance to sucking insect pests	Rice, fruits, vegetables
	Improved processing and storage	Wheat, potato, fruits,
		vegetables
	Drought tolerance	Staple cereal and tuber crops
Medium-term	Salinity tolerance	Staple cereal and tuber crops
(10-20 years)	Increased nitrogen-use	
	efficiency	
	High-temperature tolerance	
Long-term	apomixis	Staple cereal and tuber crops
(>20 years)	Nitrogen fixation	
·	Denitrification inhibitor	
	production	
	Conversion to perennial habit	
	Increased photosynthetic efficiency	

Bioenergy as a climate change mitigation technology

Felix Creutzig

Outline

- Introduction
 - Why relevant: Desperate search for climate change mitigation technologies
 - Difference to other renewables: land-use
 - Challenge of assessment: complexity of issue
- Energy Potential
 - Technical potential
 - Economic/sustainable potential
 - Different sources
- Technologies/processes
 - First-generation/ Sugarcane
 - Advanced biofuels
 - End-use: transport vs co-generation
 - BECCS
- Climate mitigation potential
 - ALCA insights
 - CLCA insights
 - Uncertainty
 - IAM insights aggregate potential
- Sustainability and Equity
 - Land-use carbon risks and opportunities
 - Land-use biodiversity risks and opportunities
 - Food and water security
 - Land-use livelihoods risks and opportunities
- Conclusions
 - Difficulty in evaluating the future
 - Conditionality statements
 - Robust and adaptive pathways

Complex issues in a high-dimensional world

WHY BIOENERGY

Alternative energies & land use

Table 8 Input and outcomes of case study.

Region	Input		NED	Distance driven*
			GJ/ha/y	10 ⁴ km
Bioethanol	l from sugar bee	et		
SE	47 ^b	t/ha/y	10.9	0.55
NL	62°	t/ha/y	15.5	0.78
ES	27 ^d	t/ha/y	4.8	0.24
Biodiesel f	rom rapeseed			
SE	2.9°	t/ha/y	18.8	1.1
NL	3.7°	t/ha/y	24.6	1.5
ES	1,3 ^f	t/ha/y	7.2	0.43
Electricity	from wood			
SE	2.48	t/ha/y	12,3	2.0
NL	2.8h	t/ha/y	14.4	2.4
ES	0.51	t/ha/y	2.5	0.41
Electricity	from wind			
SE	7.0i	m/s	978	160
NL	6.8 ^j	m/s	927	151
ES	5.1 ^j	m/s	490	80
Electricity	from solar PV			
SE	824 ^k	kWh/kWp	356	58
NL	873 ^k	kWh/kWp	421	69
ES	1473 ^k	kWh/kWp	1213	198

Dijkman & Benders, 2010: Energy density (GJ/ha/a) much higher for wind and solar than for bioenergy

	Indicative area requirement (km²/PJ/yr)	Potential sustainability issues
Bioenergy crops	50–500	Impacts on C balance, ecosystems, soils and food systems can be positive or negative, depending on management
Bioenergy residues	Almost no additional area	No or little additional area required if residues or wastes can be used; possible impacts of removal of residues on soil fertility and the soil C balance need to be considered
Solar energy	1–6	Land needed for infrastructure; excess heat can be used for grain drying
Geothermal energy	≈10	Land required for infrastructure and transmission
Hydropower	<1–100	Impacts are highly site-specific and include positive (e.g., irrigation, flood control) as well as negative aspects (e.g., biodiversity and ecosystems, resettlement during construction)
Wind power	1–32	Land for wind power plants plus transmission, affects landscapes; rotors may kill birds
Oil	<1	Land required for infrastructure and transport
Natural gas	<1	Land required for infrastructure and transport
Coal	≈1	Land required for infrastructure and transport, soil contamination
Nuclear energy	<1	Land for infrastructure and transmission; potentially much larger land areas contaminated in case of an accident

Source: GEA (Ch. 20), 2012

Coupling of energy and land markets

Variability, Complexity, Uncertainty

- Various resources: energy crops, wood, solid waste, residuals, etc.
- Various processing routes: various refinery options, technological development paths
- Various end-uses: transport fuels, co-generations, household fuel, ...
- Various climate effects: soil carbon, land use change, fertilizer, processing, ...
- Various ecological issues: biodiversity, water, landscape change, ...
- Various socio-economic challenges: food security, water provision, livelihoods, economic development, ...

System boundaries in sustainability sciences

"Scientific approach": Welldefined system boundaries

- →Operationalisibility
- → Reproducibility

Sustainability science: system boundaries are not well-defined

→ Interpretation is subject to structural uncertainty and remains ambiguous

How much bioenergy could be deployed?

POTENTIAL

Net primary production – technical potential

- Benchmark: Current annual global energy consumption: 500 EJ, growing
- Currently: ca. 50 EJ from biomass
- Carbon cycle: 2000 EJ in carbon absorbed by terrestrial plants every year, another 2000 EJ by marine plants (algae)
- This carbon is returned to the atmosphere via respiration, rot, wildfires, etc.
- The question is which part of this carbon cycle can be accessed economically, and without destroying crucial ecosystem services, and food production

Bioenergy from forestry residues	Biomass from silvicultural thinning and logging, and wood processing residues such as sawdust, bark and black liquor. Dead wood from natural disturbances, such as storms and insect outbreaks, represents a second category. Environmental effects of primary residue removal depend on land management practice and local conditions, and removal rates need to be controlled considering local ecosystem, climate, topography, and soil factors.
Bioenergy from forest unutilized forest growth	Biomass from growth occurring in forests judged as being available for wood extraction, which is above the projected biomass demand in the forest industry. Includes both biomass suitable for, e.g., pulp and paper production and biomass that is not traditionally used by the forest industry.
Bioenergy from forest plantations and agroforestry	Includes biomass from woody plants grown in short-rotation coppice or single stem plantations (e.g., willow, poplar, eucalyptus, pine). Both monoculture plantations and mixed production systems including agroforestry are included.

Bioenergy from crop residues	Use of crop residues for Bioenergy; Use of by- products associated with crop production and processing, both primary (e.g., cereal straw from harvesting) and secondary residues (e.g., rice husks from rice milling) to produce bioenergy.
Bioenergy from dedicated crops	Cultivation of high yielding crops specifically designed for energy end use. Includes cultivation of both conventional agriculture crops and bioenergy feedstock plants such as oil crops (e.g., Jatropha), grasses (e.g., switchgrass, Miscanthus).
Bioenergy from manure mgt (Biogas)	Animal dung from confined livestock production. Currently dung is often burned directly as a cooking fuel in many developing countries. Dung can be converted to biogas in biodigesters.
Bioenergy from Organic Wastes	A heterogeneous category that can include, e.g., organic waste from households and restaurants, discarded wood products such as paper and demolition wood, and wastewaters suitable for anaerobic biogas production.

Krey & Clarke, 2011/ SRREN 10.2

Source	Potential in EJ
GEA KM 7	114-239
GEA KM 11	200-500
GEA KM 17	145 60-70 (strict sust) 65 (agrar residues)
GEA KM 20	44-133 EJ (energy crops)
SRREN Ch 2	100-400 EJ
SRREN CH 10	60-160 EJ
Haberl et al. 2010	160-270 81 (energy crops) 127 residues/foresty
Vuuren et al. 2009	65-115 (sust)

Potential = Land area X yield

Huge uncertainty, not visible in individual studies.

IAMs see bioenergy as being CO2-neutral.

Creutzig et al., 2012

TECHNOLOGICAL OPTIONS

Bioenergy pathways

Bioenergy pathways

Improved cookstoves

- 2.7 billion people rely on traditional biomass for cooking
- 800 million of those currently using some sort of improved cookstoves
- Improved cook stoves can deliver fuel saving of 30-60%, and 90% in pilot studies
- High cobenefits: GHG emission reduction, black carbon reduction, less indoor air pollution, less firewood collection of women and children, cost savings

Cogeneration

- Use heat as byproduct of power generation
- 60-90% efficiency possible
- Example: sugar mills operate on burning of bagasse and possibly cogenerate electricity
- Up to 5% of Brazil's electricity produced by bagasse cogeneration

Electric cars

Campbell et al., 2009

BECCS

- BECCS: Bioenergy Carbon Capture and Storage
- Produce energy from biomass and store the CO2 emissions underground
- High uncertainty on costs and storage availability

MITIGATION POTENTIAL

LCA/land-use model studies warn of biofuel GHG emissions >= gasoline

mitigation strategy

Attributional LCA

Net energy and net GHG estimates for 6 studies of corn ethanol, as well as 3 cases. Gasoline is shown for reference. The cellulosic case is switchgrass grown on prime crop land.

Adapted from - Farrell et al, 2006

Variability across biofuels

Major point here:

GHG emissions of biofuel crucially depend on feedstock and processing, and can vary by order of magnitudes.

→ Variability (or stochastic uncertainty)

ALCA summary

LCA perspective:

In attributional LCA, GHG emissions from bioethanol are high but lower than gasoline emissions.

Globally integrated markets

F. Creutzig, D. Kammen. The Post-Copenhagen Roadmap Towards Sustainability: Differentiated Geographic Approaches, Integrated Over Goal. Innovation 4(4): 301-321

Time to repay carbon debt

Tropical rainforest	Palm biodiesel (>	Indonesia/ Malaysia
Peatland rainforest	85% of global palm production)	
Tropical rainforest	Soybean biodiesel	
Cerrado wooded	Sugarcane ethanol	Brazil
Cerrado grassland	Soybean biodiesel	
Central grassland	Correctional	US
Abandoned cropland	Corn ethanol	

Land Clearing and the Biofuel Debt, Fargione et al., 2008. Slide courtesy by Heiner von Bothmer.

Livestock intensity determines emission effects of sugarcane ethanol

Fig. 1. Modeled direct (A) and indirect (B) LUC caused by the fulfillment of Brazil's biofuel (sugarcane ethanol and soybean biodice) (PNAS) targets for 2020! his kind of results are usually not covered by global land-use/energy IAMs, but are probably highly relevant

Uncertain of direct LCA emissions

Richard Plevin, PhD thesis, 2010

Uncertainty of ILUC emissions

Creutzig et al., 2012

If there is no perfect forest protection, ILUC emissions can result in a catastrophic outcome of bioenergy deployment.

Bioenergy deployment alone can eat up the remaining GHG budget.

Real-world dynamics: Cheaper sources of biomass tend to be higher carbon.

Creutzig et al., 2012, based on Wise et al., 2009; Melillo et al., 2009; Meinshausen et al., 2010)

If assumed to be climate neutral, possibly including negative emissions, very high mitigation potential

Krey & Clarke, 2011/ SRREN 10.2

SUSTAINABILITY CONSIDERATIONS

Food insecurity

Corn prices in 2008:

Biodiversity loss

Deforestation

Bioenergy and Livelihoods

Plantation (Schoneveld et al. 2011)

Summary: bioenergy impacts

	Benefits	Harms
green house gases	low	high
poverty	more jobs,improved infrastructure	less food/ food insecurity,little labour needed,if hired - low salaries,
environment	 upgrade marginal/ in- fertile land 	 biodiversity loss, land use change (deforestation, drainage of wetlands etc.), soil degradation, influence of pesticides
energy security	 resource "land" more or less available in all parts of the world (in contrast to fossil fuel) 	

Sustainability spillover

As one sustainability problem (e.g., climate change) is targeted to be solved by industrial-scale technologies, the sustainability challenge may spill over to other domains.

Examples are biodiversity and nitrogen.

While each (un)sustainability domain can be defined by itself, the coupling, in many cases, might be induced via land use.

CONCLUSIONS

High complexity and uncertainty

- Numerous pathways and options
- Can significantly contribute to climate change mitigation
- Can also cause additional climate change via land-use emissions
- Embedded in numerous highly relevant and sensitive sustainability issues

Key conditionalities

	Condition	Failure of condition
Land-intensity	Produce bioenergy by land- intensive biomass, not by land expansion	Land carbon lossBiodiversity lossCompetition with food
Food demand	Reduce consumption of red meat	 Less land available for bioenery crops →see above
Costs	Reduce costs of cellulosic biofuels	 Not economically viable OR False options chosen → see above
Regulation	Global forest/peatland protection	 Very high risks of "leakage" → see above
Labor and value chain	Rural communities take part in value chain, get labor, ownership & keep land rights	DisempowermentInequalityExclusion

Robust and adaptive pathways

- Invest into learning of options
- Enable re-evalution
- Invest into land-saving technologies
- Keep land carbon on ground
- Safety valve to food markets

GARBAGE

Land

Oil

Sugar cane

Food crops

Transport fuel

Sugar

Food